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Generalized information gains are used to derive stability conditions, for 
steady states, periodic orbits and invariant sets, and general evolution 
criteria, both global and local with respect to the time variable, in irrevers- 
ible thermodynamics. Meixner's passivity condition and the Glansdorff- 
Prigogine stability and evolution criteria are found to be special cases 
thereof. The information gain quantities include Kullback's three kinds of 
divergences, the first two of which are dual to each other and yield criteria 
which are symmetric in the average densities of the system's extensive 
variables and the conjugate parameters, but which are nonsymmetric in the 
irreversible fluxes and forces, while the third one does not involve the entropy 
function of the system. Furthermore, Renyi's information gain of order 
and Csiszar's f-divergence are treated. The latter is used to construct a 
most general information gain quantity as a Liapunov function and 
evolution criterion, which, however, for local stability and evolution 
conditions is still equivalent to the use of the second-order variation of the 
entropy. 

KEY WORDS : Generalized information gain ; f-divergence ; nonequil ib- 
rium thermodynamics; stability theory; Liapunov functions; evolution 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In  a series o f  pape r s  (1-zz) Schl6gl  and  his c o l l a b o r a t o r s  h a v e  s h o w n  t h a t  an 

i n f o r m a t i o n - t h e o r e t i c  quan t i t y ,  n a m e l y  the  i n f o r m a t i o n  ga in  K(p ,  p')  o f  a 

p r o b a b i l i t y  d i s t r i bu t i on  p w i t h  respec t  to  a n o t h e r  d i s t r i bu t ion  p ' ,  c an  serve  
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as a Liapunov function for open thermodynamic systems far from equilibrium, 
and hence as a stability criterion for steady states which generalizes the 
Glansdorff-Prigogine stability test. (3'~,12,18> Hints were also given concerning 
the relation between the information gain K and Meixner's passivity con- 
ditions ~2'7'~ as well as the Glansdorff-Prigogine evolution criterion. (13~ 
In this work we make use of other information-theoretic quantities, so-called 
generalized information gains, which have successfully been applied in 
information theory and statistics. We show that they are also of direct 
relevance in irreversible thermodynamics, and give rise to a series of stability 
and evolution criteria. 

In Section 2 we introduce three types of information gains K,, , = 1, 2, 3, 
which have already been used by Kullback, ~6~ the first one being the con- 
ventional one as used by Schl6gl. For the case of generalized canonical dis- 
tributions, K~ and K2 are related to each other by means of a Legendre 
transformation, and K3 is a symmetrized version of both which has the 
interesting property that it does not depend directly on any entropy functions. 
Using these quantities as Liapnnov functions, we derive the corresponding 
three steady-state stability criteria, the first two of which exhibit a complete 
symmetry between the average densities N' of the system's extensive variables 
and the corresponding conjugate parameters ;~,, 1 -- 1 ..... f.  The correspond- 
ing criterion in terms of the irreversible fluxes and forces, which was already 
obtained by Schl6gl, (a'~ and which generalizes the Glansdorff-Prigogine 
condition, is rederived. The derivation here is believed to improve the 
original one in Ref. 3 by taking into account that the irreversible fluxes and 
forces cannot be directly identified with the conjugate parameters 2t, and time 
derivatives tn ~ of the average densities, respectively, but that beforehand a 
partial integration must be performed. Only in this way can the familiar 
expressions for the irreversible fluxes and forces be obtained. The procedure 
makes explicit that, contrary to the m -~ and ;~,, the fluxes and forces play a 
nonsymmetric role in the stability conditions. 

Section 3 deals with further extensions of the information gain concept. 
We use a slight modification of Renyi's information gain of order ~,(17~ 
thereby obtaining a one-parameter family of Liapunov functions. It is 
interesting to note that the corresponding stability criteria do not contain the 
average densities of the system itself, but rather those of a hypothetical system 
whose conjugate parameter vector field lies on a straight line in )t-space 
joining the parameter vector of the system in question and the corresponding 
steady-state vector. As a further extension we consider Csiszar's f-  
divergence ~8~ and form with it the most general information gain like a 
Liapunov function, which is parametrized by two rather arbitrary functions 
f and g, with all previously considered information gains being special cases 
thereof. It is shown that, despite this very general form, for local stability 
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tests, i.e., small deviations from the steady state, the resulting conditions are 
equivalent, for any admissible choice o f f  and g, to those obtained from the 
use of the second-order variation of the entropy (12,18~ as a Liapunov function, 
so that we rediscover the Glansdorff-Prigogine criteria. 

Section 4 deals with the stability problem of invariant sets. The basic 
idea is that the information gain measures some kind of "distance" between 
two probability distributions, so that it is natural to introduce now as a 
Liap.unov function the minimal "distance" between the system's actual 
distribution and the invariant set I' of distributions in question, that is, the 
minimum of the information gain where the second argument varies over P. 
From the very fact that at the point where the minimum is taken on, the 
information gain is stationary, we find stability criteria for invariant sets 
almost identical to the steady-state case. In particular, the Glansdorff- 
Prigogine steady-state stability condition, with a suitable reinterpretation, 
holds true also for invariant sets and, in particular, for periodic orbits. 

Section 5 establishes a series of local and global temporal evolution 
criteria. The global form states that a certain two-point function, namely the 
information gain corresponding to two probability distributions at different 
times, cannot be negative. If we let these two times approach each other, we 
obtain a local evolution criterion which implies that the second-order time 
derivative of the information gain, at the point of coinciding time arguments, 
must be nonnegative. Various equivalent formulations of these criteria are 
given for the case of generalized canonical distributions in terms of the 
average densities m' and conjugate parameters A~, as well as in terms of 
irreversible fluxes and forces. Meixner's passivity condition (la,ls~ and the 
Glansdorff-Prigogine evolution criterion (13~ result as special cases, as in 
Refs. 2, 3, 7, and 9. Again, certain criteria exhibit a complete symmetry 
between the m ~ and Az, whereas a corresponding symmetry does not hold for 
the irreversible fluxes and forces. 

Throughout the paper we do not make any assumptions about the 
nature of the underlying stochastic processes of the system macroobservables; 
they may be non-Markovian. We do, however, assume in most cases that the 
probability distributions at any given time are generalized canonical ones. 
By applying similar techniques as in Ref. 10, Mori distributions could have 
been used instead, but would not have led to any novel results in our approach, 
in which canonical distributions retain all the significant aspects, but avoid 
the complications, of the Mori distributions. Also it should be noted that the 
case of moving material could easily be handled by similar techniques as in 
Ref. 10, and in fact is in principle contained in our approach if the entropy is 
suitably reinterpreted. 

Finally, we point out that the central idea of the paper, namely the use of 
information-gain-like quantities as Liapunov functions and evolution criteria, 
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is not only most useful in thermodynamics, but has also been applied with 
considerable success in purely mathematical areas, furnishing a limit theorem 
for Markov chains, (~7'~9~ a novel proof of the central limit theorem, (2~ and 
as an existence proof for certain optimal hypotheses in statistics. (2~) 

2. I N F O R M A T I O N - T H E O R E T I C  L I A P U N O V  F U N C T I O N S  

Let i be a discrete label for the microstates of a thermodynamic system, 
and let p and p' be two probability distributions over these microstates. The 
quantity 

K(p, p') = ~,  p~ ln(pJp~') (t) 
i 

is then the conventional information gain as used in Refs. 1-11. Equation (1) 
is known under various names, such as directed divergence, (16~ relative 
entropy, (22-27~ or missing informationJ 23,25'2~) [The apparent contradiction 
in nomenclature is resolved by the fact that (1) can be interpreted as the gain 
of information when changing from p' to p, as well as the information still 
missing before this change is made.] Since the necessary modifications for 
dealing with continuously varying labels i (as, for example, in classical 
thermodynamics, where they represent the phase space points) are obvious 
(replacement of sums by Lebesgue-Stieltjes integrals, and of the ratio pJp~' 
by the Radon-Nikodym derivative of the two probability measures), here 
we shall stick for simplicity to the discrete case. Let us define the following 
quantities: 

K~(p, p') = K(p, p') (2) 

K2(p, p') = K(p', p) = ~ p=' ln(p,'/p,) (3) 
i 

K3(p, p') = �89 p') + K2(p, p')] = �89 ~ (p= - p=') ln(pJp,') (4) 
i 

Equations (2) and (3) are the two kinds of directed divergence introduced by 
Kullback (z6~ (only the first of which has been used so far in connection with 
steady-state stability tests), and (4) is, apart from the factor 1/2, Kullback's 
undirected divergence, which is symmetric in p and p' and has already been 
used by Jeffreys. (29~ All the above quantities serve as a measure for dis- 
criminating the two probability distributions p and p'. Namely, from the fact 
that (1) is nonnegative and vanishes if and only if p and p' coincide (1'2'16~ it 
follows immediately that the same is true for (2)-(4). Furthermore, we note 
that, since (1) is not only concave in p for fixed p,,m~ but also concave in p' 
for fixed p (since the logarithm is a convex function), the quantities (2)-(4) are 
all concave in each argument separately. Also, an easy calculation shows that  
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if A denotes the difference between unprimed and primed quantities, then, 
neglecting higher than second powers in Ap, we have 

KI(p, p') z Ks(p, p') ~ I,:~(p, p') ~ -T~2'SCv) = k ~ (/'p,)~/p,' (5) 
i 

where 

S(p) = ~ p~ log(l/p0 (6) 

is the entropy associated with the distribution p, and T (2~ denotes the quad- 
ratic term in a Taylor expansion of S ( p )  around p'. 

From the above properties we see that, in the space of distributions over 
the microstates i, the quantities (2)-(4) may all serve as Liapunov functions to 
test the stability or attractivity in the large of a probability distribution p' 
which remains stationary with respect to a given temporal evolution, or of an 
invariant set of probability distributions. 

Let us calculate (2)-(4) for generalized canonical distributions (6-8'3~ of 
thermodynamic systems. Let M~ = (M~ ~, M~2,..., M~r) r be an exhaustive set 
of extensive macroobservables (energy, particle numbers, magnetization, etc.), 
m~ = (rn~,rn~2,...,rnJ) r their densities with respect to volume, ~r  = 
(M 1, M2,..., ~--r)T and N = (rnl, rn 2 ..... ~ ) r  the corresponding average 
values, and A = (h~, 12 ..... At) the conjugate intensive quantities (inverse 
temperature, negative of chemical potentials divided by temperature, negative 
of magnetic field strength divided by temperature, etc.). Here T denotes the 
transpose of a matrix, and we use a system of units where Boltzmann's 
constant is equal to one. The different components of rn~, ~ ,  and A may 
possibly be of different tensorial character with respect to spatial transforma- 
tions. Instead of considering ~ and h as elements of the f-dimensional real 
space, we could as well take ~ as a point on a smooth manifold and A as the 
covector field generated by the entropy density (see below) in a natural way. 
Note that ~ and A are functions of space and time in general. Let 

p, = exp((~ - f dv ;tm,) = exp[f dv (~ -  am,)] (7) 

be the generalized canonical distribution, where ordinary matrix multiplica- 
tion is assumed throughout, so that hm~ denotes the sum ~{=~ Z~m~ ~. In (7), 
dv is the (time-independent) volume element, which is macroscopically 
infinitesimal, but microscopically large enough to contain many "carriers" 
of the extensive variables, and the integration goes over the whole system. 
The function 

q~ = ( dv % q) -- ~v(h) (8) 
J 
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is the negative of the logarithmic partition function, viz. one of the Massieu 
functions, (31~ and ce is its spatial density. Equation (7) is a certain generaliza- 
tion of Kubo's extensivity ansatz (32,33) to the case of inhomogeneous systems. 
Assuming a formula analogous to (7) for the primed quantities, one can 
calculate the information gains (2)-(4) to obtain 

Kl = f dvk l ,  k~ = ACe_ A?,~ = --/Xs + ,V A~  (9) 

K2 = f dv k2, k2 = --Ace+ A ? , ~ ' =  zXs-- h A~  (10) 

Ks = f dv k3, k3 = -(1/2) AA Ar~ (11) 

Here, k~, k2, and k3 are the spatial densities of the information gains (2)-(4); 
as before, A denotes the difference between unprimed and primed quantities; 
the quantity 

S = f dv s, s -~ s(m) (12) 

from (6) is the entropy corresponding to the distribution (7) and s is its 
density, with an analogous formula holding for S'. It is noteworthy that K8 
does not depend directly upon any entropy quantities. As such, it deserves 
special attention if one wishes to pursue the suggestion r that thermo- 
dynamics should be formulated without the latter. We note that -K1  is 
related to - K2 by means of a Legendre transformation, in the same way as S 
is related to ~. Namely we have 

s = -ce + Ar~, - k z  = +k2 + AA AtX 

Since different values of A or ~ correspond to different probability distribu- 
tions, the nonnegative quantities (9)-(11) vanish only for A = A' and ~ = ~ ' .  
Thus, they may all serve as Liapunov functions to test the stability in the large 
of a stationary distribution p' with corresponding values A' and r~'. In addi- 
tion, we note that K~ is concave in ~ and radially increasing with respect 
to A. ~ )  Similar considerations show that K2 is concave in A and radially 
increasing in ~.  

The Liapunov stability test requires the knowledge of the time deriva- 
tives of the Liapunov function along the actual trajectory. To this end let us 
derive the first-order variations of (9)-(11). Since 

3S = f dv 3s, 3s = A 3~ (13) 

= f dv d% 3~0 = 3A m (14) 
d 
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we find 

-3K1 = - f  dv 3kl, 

-8K2 = - f  dv 3k2, 

-3Ko = - f  dv 3k3, 

- 8 k l  = A h 3 m -  3A'Am 

= AA 3(Am) -- 3A' Am + AA 3m' (15) 

- 3 k z =  3 A A m -  AA3m' 

= 8(Aa)Am - AA 3m' + 3a"Am (16) 

- ~k3 = �89 Am + �89 ~(Am) 

-- �89 Am) (17) 

Consequently, if A' and m' are stationary values and 3 is now interpreted as a 
temporal variation, 3(...) = 3t(~/gt)(...), we have 

-~r = - f  arks, - k ~  = 6 a r ~  = Aa (Am)" (18) 

- g2 = - f  dv k2, - k2 = ;~ Am = (Aa)" A m  (19)  

- s  = - f  dv k., -k3 = kO Am + Aa m) = �89 Amy (20) 

where the dot denotes the (phenomenological) time derivative. Since a nega- 
tive-semidefinite or definite time derivative of a Liapunov function guarantees 
stability or asymptotic stability, respectively, we conclude that a thermo- 
dynamic steady state characterized by A' and m' is stable or asymptotically 
stable whenever one of the quantities -/~v from (18)-(20) is positive semi- 
definite or definite, respectively. In the case of asymptotic stability, the domain 
of attraction is certainly not smaller than the largest possible region described 
by Kv ~< C (for suitable constant C) in the interior of which - R v  is positive 
definite. As far as local stability tests (i.e., the case of small deviations of 
unprimed and primed quantities) are concerned, all three Liapunov functions 
(9)-(11) are equivalent because of (5). Consequently, they will all result in the 
well-known Glansdorff-Prigogine criterion (12,13) since /s does, as will be 
shown later (see also Refs. 3 and 4). 

We point out that the right-hand sides of formulas (15) and (16) and of 
Eqs. (18) and (19) can be obtained from each other by interchanging the 
average densities m and m' and the corresponding conjugate parameters 
A and ;~'. This symmetry between m and A, which is also exhibited in (11), 
(17), and (20), could not have been detected without the use of information 
gain functions different from (1). 
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In addition, the following is noteworthy. Assume that for finite times the 
system's actual probability distribution, say p~~ is not necessarily of the 
canonical form (7), and let 

m = ~_~Pt  m t  

be the associated average value. Assume further that, if p denotes the asso- 
ciated canonical distribution corresponding to ~ ,  then, along the system's 
actual trajectory, the inequality 

/~(p~Ot, p) ~< 0 (21) 

holds (note that bothp ~~ andp depend on time). As Kfrom (1) measures, in a 
certain way, the deviation between its two arguments, (21) means that p 
approaches pact faster than the latter quantity can "move away." Under these 
circumstances (with p' still assumed to be of the form of a canonical dis- 
tribution) the above stability criteria involving K1 are again valid. 

To see this, we start from the identity 

KI(p ~~ p') = KI(p, p') + K(p ~~ p) + ~ (p~Ot _ p~)ln(pJp/) (22) 

Because ln(pdp/) is linear in m~, and since the average value of the latter 
quantity is the same under both distributions p~Ot and p, according to our 
assumption, the sum in (22) drops out. Now the nonnegative (positive) 
definiteness of - /~ l (p  ~~ p') is clearly a sufficient criterion for (asymptotic) 
stability of the state characterized by the distribution p', so that, by (21), the 
same is true for " ' - K~(p, p ), as was to be shown. 

This result seems important since it allows for systems for which a 
conjugate parameter field does not really exist (e.g., the local temperature 
need not be defined). Instead, the above stability criterion uses the parameter 
field that would exist if the distribution were a canonical one. 

To relate the quantities on the right-hand side of (18) to the thermo- 
dynamic fluxes and forces, we observe, first of all, that the densities m z satisfy 
an equation of continuity, 

m ~ div j,~ (23) O'rat 

where O'ml is the source term andjm~ (which is a vector in ordinary three-space, 
provided the Ith extensive variable is a scalar, and, generally speaking, is of 
tensorial rank one higher than the corresponding extensive variable) represents 
the flow term. Equation (23) will be simply written as 

m = cr m - divjm (24) 

where a,~, jm, and divj~ are (column) vectors with components a,~,, Jm ,, and 
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divjm~, respectively. From (13) we have, interpreting 8 again as a temporal 
variation, that the time change of the entropy density is given by 

= ar~ (25) 

Using (24), we may write, after performing a partial integration, 

= as - divjs (26) 

where 

as = Aar, + (grad a)jm (27) 

is the entropy production [with grad A being considered a (row) vector with 
components grad hz], and 

Js = )" jm (28) 

is the entropy flow. Obviously, the entropy production (27) may be written 
in the familiar form 

as = X . J  (29) 

where the (row) vector X of the thermodynamic forces Xz is linear in ~ and 
grad ~, 

X = A.Az + (grad a).Az (30) 

and the (column) vector J of the thermodynamic fluxes jz is linear in am and 
j , . ,  

J ~- B l ' c y  m -1" B2"jm (31) 

and A1, A2, B1, and B2 are constant matrices. (Of course, they are con- 
veniently chosen such that no mixture of tensorial quantities of different rank 
will occur in any of the components of X and J.) 

We remark that we do not follow here the suggestion in Ref. 3 to identify 
" -z . . .  

the time derivatives rn z of the average densities directly with the irreversible 
fluxes, and the components of A with the forces. In fact, from formulas (24), 
(26), and (29)-(31) one can see that only for spatially homogeneous systems is 
one allowed to make this identification, because then grad )t vanishes. In all 
other cases, however, the gradients of the A z (inverse temperature, chemical 
potentials, etc.) cannot be neglected and are clearly most significant com- 
ponents of the irreversible forces. Also, only with the above formulation does 
one get the flows Jm' (heat flow, particle flow, etc.) as components of J, as it 
should be. 

The physical conservation laws will in general restrict a m to lie in a linear 
subspace of the whole f-dimensional real space, which means that some 
components of am can be expressed in terms of the others. For example, the 
conservation of atomic species in chemical reactions leads to an equation of 
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the form/3, a m = 0, where the components of the matrix/3 are the numbers of 
atoms of the various species which compose the different molecules taking 
part in the reactions. (a+ Similarly, energy or charge conservation demands 
that the sum of all the energy, or charge, source terms vanishes, so that again 
one of the source terms can be expressed in terms of the others. Also, had we 
chosen a set of extensive observables such that the average spatial densities 
m z were functionally dependent (as is the case if we take, e.g., all concentra- 
tions plus the overall mass density), we would have a corresponding functional 
dependence between the components of am and j,~. These types of functional 
dependence will clearly not invalidate (30) and (31) since the only requirement, 
which follows from (27) and (29), is that 

A~Bj ~- 1-3~j; i , j  = 1,2 (32) 

on the subspace of all physically admissible vectors em and Jm, where 1 is the 
unit matrix and 3~j is the Kronecker symbol. [We remark that, if (32) were 
generally valid, as it might be in some special cases, it would allow us to 
write the entropy flow term (28) as j~ = XB1A2J.] 

Since the last expression for - k l  in (18) is obtainable from (25) by 
replacing h and N by the corresponding differences Ah and AN, and because 
of the linear relations (30) and (31), it is obvious that we can write down an 
equation of continuity for kl analogous to (26), (28), and (29) with X and J 
replaced by AX and A J, and a change in sign. Thus 

kl = a~l - d iv j~  (33) 

Thus, if 

where 

-a~l  = AX •J (34) 

= (35)  

-Jkl = AA Ajm = 0 on the boundary OZ (36) 

of the system (which is true if, on each part of 0Z, h orjm--Or, more generally, 
some of the components of ~ and those components of jm with different 
indices--have preassigned, time-independent values) then, by performing a 
partial integration in (18), we find 

= av A x  A J  (37) 

Hence, a sufficient criterion for the stability, or asymptotic stability, of the 
steady state described by h', N', X', and J '  is that (37) is nonnegative, or 
positive, definite, respectively. This result has been obtained already in Ref. 3 
with, however, a slightly different interpretation of X and J, as was mentioned 
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before. For small deviations from the steady state (37) is the well known 
Glansdorff-Prigogine criterion. <12'~a~ 

If we had used the first expression for - k l  in (18) in the above derivation, 
then by similar techniques we would have found instead of (33)-(35) that 

k~ = ~ - d iv j~  (38) 

- ~ 1  = A X  J (39) 

- j ~  = AA'jm (40) 

so that 

provided that 

-1;;1 = f dv A X J  (41) 

-j%~ = A~.j,~ = 0 on 0Y~ (42) 

Hence, under (42), the nonnegative (positive) definiteness of (41) is also a 
sufficient criterion for (asymptotic) stability, which, for small AX, becomes 
identical to another local steady-state stability condition given by Glansdorff 
and Prigogine. <13'1~) Of course, (33) and (38) are equivalent, since (35) and 
(40) differ by AA.jm, while (34) and (39) differ by the divergence of this vector 
field. 

3. GENERALIZED I N F O R M A T I O N  G A I N S  

The concept of the gain of information has been extended by Renyi, (zT) 
who has also given an axiomatic characterization resulting in a one-parameter 
family of quantities, the so-called information gains of order a, given by 

(~ - 1) -1 log ~p,(p,/p,)~,-1 (43) 

Since (43) is nonnegative for c~ > O, but nonpositive for ~ < O, it is more 
advantageous for our purposes to divide (43) by ~, so that the resulting 
expression will be always nonnegative. We obtain the quantity 

K<")(p, p') = [~(c~ - 1)]-1 log ~ p,(pJp{)~-I (44) 

where a is an arbitrary real number, and, as is easy to check, the limiting 
cases ~ -+ 1 and c~ --+ 0 yield, respectively, the quantities (2) and (3). Since (44) 
is concave in each argument separately and vanishes if and only if the two 
distributions p and p' coincide, it may again serve as a Liapunov function, 
parametrized by a. Because 

K<'~(p, p') = K<l-~(p',.p) 
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there is no need to generate new quantities by interchanging p and p'. The 
analog of (5) reads 

K(~'(p, p') ~ - T(2~S(p) = (1/2) ~ (Ap~)2/p{ 
i 

and we see that, as far as local stability tests are concerned, the functions (44), 
for different a, are all equivalent and lead again to the Glansdorff-Prigogine 
condition. 

For canonical distributions (7) we obtain 

K (~) f dv k (~), k (~) [a(1 1" ,, = = - ~ ) ] -  [~0 - a ~ o -  (1 -a)~o' l 

where ~0" = go(A") and 

M = aA + (1 - a)A' (45) 

From (14) we find 

= (1 - a)-i  f do ~(~ _ m") 

= (1 - ~ ) - ~ f  do (a - a").(m ~") (46) 

where ~"  corresponds to the parameter A" from (45), so that we obtain a 
one-parameter family of stability conditions. An interesting case is c~ = 1/2, 
with 

K(1/U>(p, p') = - 4 log ~ (p,p{)l/2 
i 

being related to the Hellinger integral, and 

1 k (1/2) -- - - 4 [ q o ( ~  -~)  - ~0(A) - l~0(A')] 

It should be noted that the above stability criteria--contrary to the 
.previous ones--involve conditions on the double-primed quantities which 
correspond to a hypothetical system whose conjugate parameter vector (45) 
lies, in A-space, on a straight line connecting the points A and A' and in between 
these points only for 0 < a < 1. 

A further extension of the concept of the gain of information is Csiszar's 
f_divergence,~18,1~) 

KI(p, p') = ~ p~f(p{/p,) (47) 
t 

Here, f is an arbitrary concave function, defined for nonnegative arguments; 
by subtracting a suitable constant f r o m f w e  can always achieve f(1) --- 0, so 
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that (47) vanishes for p = p'. It is known (ls~ that, if f is strictly convex at the 
point l, then (47) vanishes only for p = p'. Thus, it is positive definite, and 
may again serve as a Liapunov function. [Note that the choices f ( ~ ) =  
log(1/~), f(~) = ~ log ~, and f(~) -- (~ - 1) log ~ yield, respectively, the 
expressions (2)-(4).] Again there is no need to generate new quantities by 
interchanging p and p' in (47) since K1(p',p)= Kt(p,p'), where f ( ~ ) =  

.f(~-1) is convex i f f  is. For canonical distributions (7) we obtain formally 

Kr = e~f(exp[-A~ - f dv AA S/SAl)e-~ 

where ~/~A is a (column) vector with components 8/~hz, and these functional 
derivatives act solely on the right factor e -m, which is a functional of A 
according to (8). 

Since a monotonically increasing function g (vanishing at the origin) of a 
Liapunov function is again a Liapunov function, we may use as such the 
quantity 

V(p, p') = g(K~(p, p')) (48) 

For the choice f($) = {sign[a(c~ - 1)]}(~ 1-~ - 1) and g(~) = [a(a - 1)] 1 • 
log ($/sign[~(a - 1)] + 1} we obtain again the quantity (44). It is interesting 
that, despite the general nature of (48), which contains two rather arbitrary 
functions f and g, for local stability tests V(p, p') is nevertheless essentially 
equivalent to the simple Liapunov function -T(2)S(p) from (5). Namely, if 
g(V)(0) is the first nonvanishing derivative of g at the origin, then we have for 
small Ap the asymptotic relation 

V(p, p') = const x [ -  T(2~S(p)] ~ (49) 

where the (positive) constant is g(~(0)[f"(1)/2] ~, as follows immediately by 
expanding (48) in terms of powers of Ap. 

4. STABILITY OF I N V A R I A N T  SETS A N D  PERIODIC ORBITS 

Since a positive-definite function V(p, p') measures, in some sense, the 
"distance" between the points p and p', it seems natural, with respect to the 
problem of stability and attractivity of an invariant set F (i.e., a set which, 
once entered, is never left again by the system's temporal trajectory) to use as 
a Liapunov function the "distance" between the point p and the set F, i.e., 
the function 

V(p, F) = m i n  V(p, p') = V(p, p'(p)) (50) 

assuming that the minimum exists for all points p (note that F may be 
assumed to be closed (37~) and is taken on at the point p'  = p'(p), say. 
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We have the following statement, which apparently has not been used so 
far in general stability theory. A sufficient criterion for the (asymptotic) 
stability of the set I" is that the time change of V(p, p'(p)), which is caused 
solely by the temporal change of the first argument in V, is nonpositive 
(negative) definite. That is to say, we must have 

, ~< 
[J~ ~V(p, p (p))/~p~ ( < )0 (51) 

i 

where O VlOp~ means differentiation of V with respect to its first argument 
only. To prove this, it is sufficient to show that (50) is monotonically decreas- 
ing unless p ~ F. Letting 7 > 0, we have 

v ( t  + 7) - v ( t )  

- V(p( t  + y), p '(p(t  + 7))) - V(p(t) ,  p'(p(t)))  

= [V(p( t  + 7) ,p '(p(t  + ~))) - V(p( t  + 7),p'(p(t)))] 

+ [V(p( t  + 7), p'(p(t))) - V(p(t) ,  p'(p(t)))] 

By the definition of the function p'(.),  the first bracket on the right-hand side 
is always ~< 0. It is thus sufficient to show that the second term is always 
nonpositive (negative), which in fact is guaranteed by our assumption (51). 
Note that the differentiability ofp'(p) with respect to p was not needed in the 
proof, and in fact will not hold generally if P is not convex. A simple example 
for this case is sketched in Fig. 1. Here, if p varies along the line L, we will 
obviously have p'(p) = a for p varying between a and b, and p'(p) = c for p 

Fig. 1 
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lying between b and c, where b is an appropriately chosen point on L. Thus, 
p'(p) is a noncontinuous, and hence nondifferentiable, function here. 

Similarly as for steady states, one finds that the domain of attraction, in 
the case of asymptotic stability, includes all those points p for which (50) is 
bounded by a suitable constant C, with (51) being valid. 

The important point in the above criterion is to realize the very fact that 
only the temporal change of V(p, p') as caused by its dependence upon the 
first argument p is involved. Hence we end up with essentially the same 
conditions as for stationary p'. Consequently, if we use for V one of the 
functions (2)-(4), (44), (47), or (48), we reocver exactly the same stability 
conditions as in the steady-state case, given in the previous two sections, 
except that now the primed quantities must be interpreted as those points 
where V, as a function of its second argument with the first one held fixed, 
takes on its minimum according to (50). Explicitly we find from (18)-(20) and 
(46) that a sufficient criterion for (asymptotic) stability of the set F is that one 
of the expressions 

f dv A,~ ~, 

�89 dv (A A~  + AA m), 

f dv ~,~m, 

(1 - ,~)-1 f a v  ~(m - m") 

(52) 

is nonnegative (positive) definite. Also, if the boundary condition (42) holds, 
the first expression in (52) is the same as 

f dv aXJ (53) 

as was shown already in Section 2. Consequently, for the stability criterion in 
local form (i.e., for small deviations from the set F, the latter being of course 
of finite extension) the Glansdorff-Prigogine criterion in the form (53) with 
small AX is also valid for invariant sets, and hence in particular for periodic 
orbits. We assumed here that the probability distributions are again canonical 
ones, which, however, seems less likely to hold than in the case of systems 
tending toward a stationary state. 

The above results can also be found by a more explicit calculation of the 
minimum of V according to (50), provided this minimum can be obtained by 
setting the derivative of V with respect to the primed variables equal to zero. 
As pointed out above, this will not be true in general unless we suitably 
restrict the domain of the system variables under consideration, namely to an 
appropriate neighborhood of F, as we shall do here. For convenience we take 
for V the quantity (2) and consider the case of a periodic orbit, which in 
)~-space is the set 

1 ~={~'(~):  0~<r  r} (54) 
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where r is the period. [The other information gain functions introduced 
previously could be used as well; also, more general sets I' could be handled 
in this manner provided their boundary is sufficiently smooth so that the 
method of Lagrange parameters works when evaluating the minimum (50); 
finally, even the above differentiability assumption could be dropped by 
developing a Kuhn-Tucker-type argument.] Expressing p by means of the 
corresponding mean value vector field m, and p' by the conjugate parameter 
field A', we have V = Kz as a functional of m and A'. 

To evaluate the minimum (50) when A' varies over P, we put (d/dcOK~ = 
0, i.e., 

.I dv i' ~K~/~A" = 0 

where the dot indicates the derivative with respect to e. Using (15), we find 

f dv )t' Am 0 (55) 

Let cro be the solution of (55), and let us denote A'(~r0) again by A', so that the 
Liapunov function (50), in m-space, is given by (9). Note that A' = A'(~o) is 
the point on the periodic orbit in A-space that is closest, in the sense of a 
minimal value of K~, to the (time-varying) point h that characterizes the state 
of the system under consideration. The (asymptotic) stability of (54) is now 
guaranteed if the time change of - V  = -K~ is nonnegative (positive) 
definite. Using (15), we see that 

Kz = f dv (AA N - Croi' Am) 

which, by (55), reduces to 

- i ~  = f av ~Ar~ 

and coincides with the first quantity listed in (52). 

5. I N F O R M A T I O N - T H E O R E T I C  E V O L U T I O N  C R I T E R I A  

In a very general sense the equation 

V(p(tl), p(to)) >~ 0 (56) 

where V is a positive-definite function, represents an evolution criterion, since 
it implies that the system's temporal development from time to with corre- 
sponding probability distribution p(to) to time tl with corresponding dis- 
tribution P(h) (forward or backward in time according to whether h is larger 
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or smaller than to) can only be such that (56) holds. Rewriting (56) as 

-f~i 1 dt (d/dt)V(p(t), p(to)) <~ 0 (57) 

and taking for V one of the information gain functions (2)-(4), (44), (47), or 
(48), we end up with a whole series of evolution criteria. We note that the dual 
of (57), 

ft '~ (d/dt)V(p(tl), p(t)) <~ dt 0 
o 

will not bring anything new here since it essentially corresponds to an 
interchange of p and p'  in the information gain functions, which gives rise 
simply to another kind of such function. If  we take V = K1 from (2) and use 
(18) with the primed quantities now being interpreted as the values of the 
corresponding variables at time to, we find from (57) 

ftl 1 dtj( dv AA (Am)" =_ f) dt dv A h ~  <~ 0 (58) 

where here A denotes the difference between the variables at time t and at 
time to. Equation (58) can be integrated to give, using (13) and (25) and re- 
placing t~ again by t, 

AS <<. f dv A' Am (59) 

If, in addition, the boundary condition (36) holds, then, by similar arguments 
as in Section 2, (58) can be written as 

f?J dt dv AX AJ <~ 0 (60) 
o 

Similarly, if the boundary condition (42) holds, then (58) is equivalent to 

dt dv AXJ  <~ 0 (61) 
o 

Expression (61) is one of Meixner's passivity conditions (~4,~5) and has been 
derived already in Refs. 2 and 7, where, however, again the interpretation of 
the quantities X and J is slightly different from ours. We remark that the 
boundary conditions (36) and (42) are both valid whenever 

AA = 0 o n  ~X 

which means stationary boundary conditions for the conjugate parameter 
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vectors, since ~' is a stationary quantity. Taking for V the quantities (3), (4), 
and (44), respectively, one derives in a similar way that 

s?; dt dv(Ah)" Am w_ dt d v A A ~ < 0  (62) 
0 

J,f f?f tlat dv(Ah• + h A m ) =  at dv(AA Am)" ~<0 (63) 
to r o 

and 

f" f (1-~) -1  dt dv A(m - m") <~ 0 (64) 
o 

where m" corresponds again to the parameter vector h" from (45), with A and 
A' being the parameters at times t and to, respectively. We note that (58) and 
(62) exhibit again a complete symmetry between the average densities and the 
conjugate parameters; this symmetry also shows up in (63). Using (14), (62) 
can be integrated to give 

Ar <~ f dv AA m' (65) 

as a dual of (59). The inequality (63) is particularly interesting because of its 
simplicity. Integrating (63) gives the simple evolution criterion 

f dv AA Am 0 <<. (66) 

which does not contain any thermodynamic functions but solely the vector 
fields m and h. We remark that, because of (9)-(11), the criteria (59), (65), and 
(66) also could have been obtained directly from (56) by taking for V the 
quantities (2)-(4). 

As has been pointed out in Section 3, the different information gain 
functions (2)-(4), (44), (47), and (48) are all essentially equivalent locally, i.e., 
for small values of Ap = p - p'. Consequently, the evolution criteria genera- 
ted by them will in turn all be equivalent for tl close to to, i.e., for small time 
intervals, because then also p(q) will be close to p(to). Hence, in order to 
derive this criterion, we may pick the most convenient information gain 
function, which is (4) in this case, and which has given rise to (66). Dividing 
the latter inequality by (At) 2, where At = tl - to, and letting At -+  0, we 
find the evolution criterion 

f dv ~ <~ 0 (67) 

We remark that (67) is equivalent to 

(d2/dt 2) V(p(t), p(to))lt-- to >1 0 (68) 
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where V is any one of the previously used information gains (2)-(4), (44), (47), 
or (48), provided that g in (48) has a nonvanishing first derivative at the origin. 
Namely, from (49) with v = 1 and (5) it follows that, for t close to to, we have 

V(p(t) ,  p(to)) ,~ const • K3[p(t), p(to)]; const > 0 

while (11) shows that then 

K3 ~,, -(l/2)(At)~ f dv 

which proves (68). 
The relation (68) can also be proved directly from (56), which obviously 

implies that the first nonvanishing term in a Taylor expansion of 
V(p( t ) ,  p(to)) around t = to must be nonnegative. Assuming that already the 
first term in this expression is different from zero, this implies that 

(t - to)(d/dt)V(p(t),p(to))]t=to > 0 for small t - to # 0 (69) 

Now, (69) is impossible because t - to may have either sign. Consequently, 
the linear term of the Taylor expansion of (56) vanishes, and so we conclude 
that (68) is valid. The relations (56) and (68) are evolution criteria of a very 
general nature. They make use of an information gain quantity V which may 
he called a two-point function with respect to the time variables. 

In the following some equivalent forms of (67) and (68) will be derived. 
Putting (13) in the form 

and writing, in a self-explanatory notation, 

d$ d~ dr~ 
S=~7 =~7~+W ~ 

where 

dt = d y e ,  - ~  ~; = dv h ~  (70) 

we have from (67) 

(dA/dt)S ~< 0 (71) 

This criterion says that the acceleration of the total entropy of the system, 
caused solely by the time dependence of A, cannot be positive at any time. 
Similarly, putting (14) in the form 
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and writing 

with 

we find 

cl~ . dm 

(dA/dt)(~ = f dv Am 

(dm/dt)6 = f dv 

(dm/dt)(~ <~ 0 

which is the dual of (71). 
Denoting now by P the total entropy production of the system, 

P = f dv~s = f dv XJ 

and putting 

dX p d__J p 
P=--d-{ +dr 

where 

(72) 

where 

axp=fat av (Ax).as = f dvs 

dt = dv ffJ, -~ dv XJ (73) 

and assuming that the boundary condition 

)tjm = 0 on OY~ (74) 

is valid, we have, by similar arguments as in Section 2, that the right-hand 
sides of (70) and (73) coincide, so that 

(ax/at)e <. o (75) 
Similarly, if 

P = f  d v A X A J  

denotes the so-called excess entropy production, where A denotes the devia- 
tions from steady-state values, then under the boundary condition 

)tAjm = 0 on 0X (76) 

we find 
(dX/dt)P <<. 0 (77) 
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The relations (56), (58), (59), (62)-(68), (71), and (72) are generally valid 
evolut ion criteria. Relat ions (75) and (77) represent  the well-known Glans-  
dorff-Pr igogine evolut ion conditions (13~ valid under  the boundary  conditions 
(74) and (76), respectively, with (60) and (61) being the corresponding forms 
for finite t ime intervals. 
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